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Abstract. We present unified approaches to Hadamard and Tykhonov well-posedness. As
applications, we deduce Tykhonov well-posedness for optimization problems, Nash equilib-
rium point problems and fixed point problems etc. Especially, by applying such approaches,

we deal with the well-posedness as stated in (Lignola and Morgan (2000), Journal of Global
Optimization 16, 57–67) in which Lignola and Morgan investigated directly and intensively
Tykhonov types of well-posedness for optimization problems with constraints defined by

variational inequalities, namely, generalized well-posedness and strong well-posedness. We
give some sufficient conditions for Hadamard well-posedness of such problems and deduce
relations between Hadamard type and Tykhonov type of well-posedness. Finally, as corol-

laries, we derive generalized well-posedness and strong well-posedness for these problems.

Key words: Fixed point, Generalized well-posedness, Hadamard well-posedness, Nash equi-
librium, Optimization problem, Strong well-posedness, Tykhonov well-posedness

1. Introduction

Recently, well-posedness for various types of nonlinear problems has
attracted attentions of many researchers. In 1993, Dontchev and Zolezzi’s
monograph [2] was published. Ref. [3] includes several surveys on well-po-
sedness of vector optimization problems, Nash equilibria and variational
calculus etc. In recent years, many researchers investigated intensively well-
posedness for some specific problems. For instance, Revalski [4] gave a
survey on various aspects on well-posedness of optimization problems;
Lignola and Morgan [1] investigated well-posedness for optimization prob-
lems with variational inequalities constraints; Margiocco et al. [5, 6] dis-
cussed Tykhonov well-posedness for Nash equilibria. Well-posedness for
vector optimization problems has been investigated by Loridan [7] and Hu-
ang [8] etc.
As is well-known, the notions of well-posedness can be divided into two

groups, namely, Hadamard type and Tykhonov type. Generally speaking,
to consider Tykhonov type of well-posedness for some problems, one intro-
duces the notion of ‘approximating sequence’ for the solutions and requires
some convergence of such sequences to a solution of the problem. As for
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Hadamard type of well-posedness of a problem, we mean the continuous
dependence of the solutions on the data of such problem related to some
topology on the problem space. Almost all the literature deals with directly
specific notions of well-posedness, especially Tykhonov types of well-posed-
ness. While some researchers have investigated the relations between them
for different problems (see [3, 9, 10] etc.), there is no general research to
such relations. Aim of this paper is to present a unified approach to both
Hadamard and Tykhonov well-posedness. Precisely, we propose a general
notion of Tykhonov well-posedness, which is suitable for many nonlinear
problems including optimization problem, fixed point problem, Nash equi-
libria etc. We will discuss generally the relations between Hadamard and
Tykhonov well-posedness. As applications, we deduce some well-posedness
theorems for optimization problems, Nash equilibrium point problems and
fixed point problem etc. Especially, we investigate well-posedness for opti-
mization problems with constraints defined by variational inequalities.

2. Unified Approaches to Well-Posedness

In this section, we give general notions of Tykhonov well-posedness and
Hadamard well-posedness and investigate relations between them.
Let X and Y be two Hausdorff topological spaces and F : Y! 2X be a

set-valued map. Rþ denotes the set of all nonnegative real-numbers.

DEFINITION 2.1. Let y 2 Y and suppose that there is u : X! Rþ such
that uðxÞ ¼ 0 if and only if x 2 FðyÞ.

(i) If for any xn 2 X, uðxnÞ ! 0 implies that fxng has a subsequence
converging to an element in FðyÞ, then y is said to be generalized Ty-
khonov well-posed with respect to u;

(ii) If FðyÞ ¼ fx�g (a singleton) and for any xn 2 X, uðxnÞ ! 0 implies
that xn ! x�, then y is said to be Tykhonov well-posed with respect
to u.

Definition 2.1 is a unified approach to Tykhonov well-posedness, which
can be applied to various nonlinear problems. For instance, for an optimi-
zation problem

inf
x2A

fðxÞ

we may define uðxÞ ¼ fðxÞ � inf u2A fðuÞ; for Nash equilibrium point prob-
lems, let

uðxÞ ¼
Xn

i¼1
½sup
ui2Xi

fiðui; xîÞ � fiðxi; xîÞ�;

and for fixed point problems of set-valued maps, let
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uðxÞ ¼ dðx; fðxÞÞ:
(The notations above will be described precisely in the sequel). Then we
obtain the Tykhonov well-posedness for such problems.
The following definition is a unified approach to Hadamard well-posed-

ness.

DEFINITION 2.2. Let y 2 Y.

(i) If for any yn ! y, any xn 2 FðynÞ, xn must have a subsequence con-
verging to an element in FðyÞ, then y is said to be generalized Had-
amard well-posed;

(ii) If FðyÞ ¼ fx�g (a singleton) and for any yn ! y, any xn 2 FðynÞ, xn
must converge to x�, then y is said to be Hadamard well-posed.

The following Theorem 2.1 shows the relation between Tykhonov well-
posedness and Hadamard well-posedness.

THEOREM 2.1. Let y 2 Y and suppose that there is u:X! Rþ such that
uðxÞ ¼ 0 if and only if x 2 FðyÞ. For any xn 2 X, if the following condition
holds:

uðxnÞ ! 0) 9yn 2 Y with xn 2 FðynÞ such that yn ! y; ð1Þ
then
(a) that y 2 Y is generalized Hadamard well-posed implies that y 2 Y is

generalized Tykhonov well-posed with respect to u;
(b) that y 2 Y is Hadamard well-posed implies that y 2 Y is Tykhonov

well-posed with respect to u.

Proof. (a) Let (1) hold and y be generalized Hadamard well-posed. Let us
show that y is generalized Tykhonov well-posed. Indeed, if uðxnÞ ! 0, then
by (1), there is yn 2 Y such that xn 2 FðynÞ and yn ! y. Thus xn must have
a subsequence convergent to an element in FðyÞ. Hence y is generalized Ty-
khonov well-posed.
The same argument can also be applied to prove (b). u

THEOREM 2.2. Let X and Y be two Hausdorff topological spaces and
F:Y! 2X be a set-valued map. If y 2 Y; then

(a) if F is upper semicontinuous at y 2 Y and FðyÞ is compact, then y is
generalized Hadamard well-posed,

(b) if F is upper semicontinuous at y 2 Y and FðyÞ ¼ fx�g, then y is Had-
amard well-posed.

Proof. (a) Equivalently, we prove that fxng has a cluster point in FðyÞ. By
way of contradiction, suppose that fxng has no cluster point in FðyÞ. For
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each u 2 FðyÞ, there exist an open neighborhood OðuÞ of u in X and a posi-
tive integer nðuÞ such that xn j2OðuÞ for all nPnðuÞ. Since
FðyÞ � [u2FðyÞOðuÞ and FðyÞ is compact, there exist u1; u2; . . . ; uk 2 FðyÞ
such that FðyÞ � [ki¼1OðuiÞ. Now let n0 be such that n0PnðuiÞ for
i ¼ 1; 2; . . . ; k, then for any nPn0, xn j2OðuiÞ for i ¼ 1; 2; . . . ; k. Since F is
upper semicontinuous at y 2 Y, for open set [ki¼1OðuiÞ with
[ki¼1OðuiÞ � FðyÞ, there exists n00Pn0 such that xn 2 FðynÞ � [ki¼1OðuiÞ for
all nPn00. Now we have xn00 j2OðuiÞ for i ¼ 1; 2; . . . ; k and xn00 2 Fðyn00 Þ
� [ki¼1OðuiÞ, a contradiction. Hence fxng has a cluster point �x 2 FðyÞ; that
is, fxng has a subsequence converging to �x 2 FðyÞ.
(b) Also by way of contradiction, assume that fxng does not converge to

x�. Then there exists an open set O with x� 2 O such that fxng has a sub-
sequence fxnkg with xnk j2O. Obviously, any subsequence of fxnkg does not
converge to x�. But, by (a), fxnkg has a subsequence converging to x�. This
is a contradiction and completes the proof. u

3. Applications

In this section, we apply the unified approach in the previous section to
investigate well-posedness for optimization problems, Nash equilibrium
problems and fixed point problems etc.
First we consider well-posed Nash equilibrium problems. Let

N ¼ f1; . . . ; ng be the set of players. For any i 2 N, denote î ¼ N n i. For
any i 2 N, Xi, a nonempty compact subset of a Hausdorff topological
space Ei, is the strategy set of player i and fi:X ¼

Qn
i¼1Xi ! R which is

continuous on X is the payoff function of player i.
Let C be the collection of all f ¼ ðf1; . . . ; fnÞ satisfying the above condi-

tions. For any f ¼ ðf1; . . . ; fnÞ 2 C, g ¼ ðg1; . . . ; gnÞ 2 C, define

qðf; gÞ ¼ sup
x2X

Xn

i¼1
jfiðxÞ � giðxÞj:

Then ðC;qÞ becomes a metric space.
Let M ¼ ff ¼ ðf1; . . . ; fnÞ 2 C j there is Nash equilibrium x� 2 X for f,

i.e., for any i 2 N, fiðx�i ;x�îÞ ¼ supui2Xi
fiðui;x�î Þg. For any f 2M, denote by

Fð f Þ the set of all Nash equilibria of f. Then F defines a set-valued map
from M into X. By Theorem 3.3 of [11], F is an usco map. Note that in
[11], in order to guarantee the existence of Nash equilibria, in addition to
the continuity conditions, it is required that f satisfies some convexity con-
ditions which is not necessary for the proof of continuity of F. The defini-
tion of M guarantees the existence of Nash equilibria.
Hence every f 2M is generalized Hadamard well-posed and if further-

more, Fð f Þ ¼ fx�g, then f is Hadamard well-posed.
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Let uðxÞ ¼
Pn

i¼1½supui2Xi
fiðui; xîÞ � fiðxi; xîÞ�, then for any x 2 X;

uðxÞP0 and for any u 2 Fð f Þ, uðuÞ ¼ 0. For any xm 2 X with
emi :¼ supui2Xi

fiðui;xmî Þ � fiðxmi ;xmî Þ ! 0, i.e., uðxmÞ ! 0, i 2 N, define

f mi ðxÞ ¼
fiðxÞ þ emi ; fðxÞOami � 2emi ;
ami � emi ; ami � 2emi < fiðxÞOami ;
fiðxÞ � emi ; ami < fiðxÞOAi;

8
<

:

where ami ¼ maxui2Xi
fiðui;xmî Þ and Ai ¼ maxx2X fiðxÞ. Then, it can be rou-

tinely verified that f m 2M, xm 2 Fð f mÞ and

qð f m; f Þ ¼ sup
x2X

Xn

i¼1
jf mi ðxÞ � fiðxÞjO

Xn

i¼1
emi ! 0:

Hence, by Theorem 2.1, every f 2M must be generalized Tykhonov
well-posed and if Fð f Þ is a singleton then f is Tykhonov well-posed.
As a special case, when n ¼ 1, we obtain well-posedness for optimization

problems. Let X be a compact Hausdorff topological space and let CðXÞ
be the space of all continuous real-valued functions, endowed with the uni-
form norm. Then, every f 2 CðXÞ is generalized Hadamard well-posed and
if, furthermore Fð f Þ ¼ fx�g then f is Hadamard well-posed.
Let uðxÞ ¼ fðxÞ � inf u2X fðuÞ. Then the similar argument implies that

every f 2 CðXÞ must be generalized Tykhonov well-posed with respect to u
and if Fð f Þ is a singleton, then f is Tykhonov well-posed with respect to u.
It is also should be noted that the notions of Tykhonov well-posedness

defined above for Nash equilibria and optimization problems are the same
as the usual sense.
Finally we consider well-posed fixed point problems. Let X be a compact

metric space and KðXÞ be the set of all nonempty compact subsets of X.
For any A;B 2 KðXÞ, hðA;BÞ denotes the Hausdorff distance between A
and B.
Let C ¼ ff :X! KðXÞ j f is upper semicontinuous on Xg and for any

f; g 2 C, define

qðf; gÞ ¼ sup
x2X

hðfðxÞ; gðxÞÞ:

Let Y ¼ C� KðXÞ and for any y ¼ ðf;AÞ 2 Y, y0 ¼ ð f 0;A0Þ 2 Y define

Dðy; y0Þ ¼ qðf; f 0Þ þ hðA;A0Þ;

then ðY;DÞ is a metric space.
Let M ¼ fy ¼ ðf;AÞ 2 Y j 9x 2 A; x 2 fðxÞg. For any y 2M, define

FðyÞ ¼ fx 2 A j x 2 fðxÞg, i.e., FðyÞ is the set of all fixed points of f in A.
Then F defines a set-valued map from M into X and F can be proved to
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be an usco map by applying the argument in the proof of Lemmas 5 and 6
of [12].
By Theorem 2.2, every y 2M is generalized Hadamard well-posed and

if, furthermore, FðyÞ is a singleton then y is Hadamard well-posed.
Now denote uðxÞ ¼ dðx; fðxÞÞ ¼ inf u2fðxÞ dðx; uÞ, where dðx; uÞ denotes

the distance between x and u in X. For any x 2 X we have uðxÞP0 and
for any u 2 FðyÞ, uðuÞ ¼ 0. For any xn 2 X with dðxn; fðxnÞÞ ! 0, denote
dn ¼ dðxn; fðxnÞÞ. Define fn:X! KðXÞ as follows: for any x 2 X,

fnðxÞ ¼ fu 2 X j dðu; fðxÞÞOdng;

and we denote An ¼ A; yn ¼ ð fn;AnÞ.
It can be checked that fn 2 C, yn ¼ ðfn;AnÞ ! ðf;AÞ and xn 2 fnðxnÞ, i.e.,

yn 2M, xn 2 FðynÞ. By Theorem 2.1, every y 2M must be generalized Ty-
khonov well-posed with respect to u and if, furthermore, FðyÞ is a single-
ton, then y must be Tykhonov well-posed with respect to u.

4. Well-Posedness for OPVIC

Following [1], let X be a topological space, E be a Banach space with dual
space E� and K be a nonempty convex closed subset of E. Let E0 be the
collection of all affine functionals defined on E satisfying that there exists
A 2 E� and k 2 R such that hu;wi ¼ hA;wi þ k for any w 2 E.
Given a function f :X� E! R, an optimization problem with variational

inequality constraints, denoted by OPVIC, can be stated as follows:

ðOPVICÞ min fðx; uÞ
subject to ðx; uÞ 2 X� E and u 2 TðxÞ;

�
ð2Þ

where TðxÞ is solution set of parametric variational inequality ðVIÞðxÞ
defined by the pair ðuðx; �Þ;KÞ, uðx; �Þ being an operator from E to E0, i.e.,
u 2 TðxÞ if and only if u 2 K and satisfies the inequalities:

huðx; uÞ; u� viO0; 8v 2 K:

REMARK. In [1], in the constraints the parametric variational inequality
ðVIÞðxÞ is defined by the pair ðAðx; �Þ;KÞ where Aðx; �Þ is an operator from
E to E�. Hence the OPVICs here include that in [1] as special cases.

In [1], Lignola and Morgan introduced Tykhonov type of well-posedness
for OPVICs, namely, generalized well-posedness and strong well-posedness.
In this section, we present an alternative approach to the study of well-
posedness for OPVICs. In principle, we first investigate Hadamard type of
well-posedness of OPVIC and we determine classes of problems which
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guarantee some Hadamard well-posedness. Secondly, we deduce the rela-
tions between Hadamard type of well-posedness and Tykhonov type of
well-posedness defined in [1]. Our results include the corresponding results
in [1] as special cases.

DEFINITION 4.1. Let X and Y be two topological spaces and F :Y! 2X

be a set-valued map. F is said to be a sequentially closed map if its graph
GrF ¼ fðy; xÞ 2 Y� X j x 2 FðyÞg is sequentially closed, i.e., for any
sequence fðyn; xnÞg 2 GrF, if ðyn; xnÞ ! ðy0;x0Þ, then ðy0;x0Þ 2 GrF.
In the following, we recall some notions defined in [1].

DEFINITION 4.2. Let x 2 X and fxng be a sequence converging to x: A
sequence fung is said to be an approximating sequence for the problem
ðVIÞðxÞ (with respect to fxngÞ if un 2 K for any n and there exists a
sequence of positive numbers feng converging to zero such that

huðxn; unÞ; un � viOen; 8v 2 K:

Denote ðVIÞ ¼ fðVIÞðxÞ;x 2 Xg.

DEFINITION 4.3. The family ðVIÞ is parametrically strongly well-posed if:

i(i) there exists a unique solution �ux to ðVIÞðxÞ, for all x 2 X;
(ii) for all x 2 X and for all fxng converging to x, every approximating

sequence for the problem ðVIÞðxÞ (with respect to fxng) strongly con-
verges to �ux.

Let X be a sequentially compact topological space. Let C be the collec-
tion of all maps A : X� E! E� and let C be the collection of all maps
u : X� E! E0 such that for any ðx; uÞ 2 X� E, there is A 2 C and k 2 R
such that huðx; uÞ;wi ¼ hAðx; uÞ;wi þ k, 8w 2 E. For any u1 ¼ ðA1; k1Þ,
u2 ¼ ðA2; k2Þ 2 C, define

dðu1;u2Þ ¼
jk1 � k2j; A1 ¼ A2

1þ jk1 � k2j; A1 6¼ A2

�

then it can be routinely checked that ðC; dÞ is a metric space.
Let M1 be the collection of all ðf;uÞ such that

(i) f is lower semicontinuous on X� ðE; sÞ, where ðE; sÞ denotes the
space E with the strong topology;

(ii) The family ðVIÞ is parametrically strongly well-posed; and
(iii) sup

ðx;uÞ2X�E
jfðx; uÞj < þ1.

Then for each p ¼ ðf;uÞ 2M1, we obtain an OPVIC defined by (2). For
any p1; p2 2M1, define
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qðp1; p2Þ ¼ sup
ðx;uÞ2X�E

j f1ðx; uÞ � f2ðx; uÞj þ dðu1;u2Þ;

Clearly, ðM1; qÞ is a metric space. Let M ¼ fp 2M1:p admits at least one
solutiong. For each p 2M, denote by FðpÞ the solution set of p. Then F
defines a set-valued map from M into X� K.

DEFINITION 4.4. Let p 2M.

(i) p is said to be generalized Hadamard well-posed with respect to M if
for any sequence fpng �M with pn ! p and any sequence
fðxn; unÞg � X� E with ðxn; unÞ 2 FðpnÞ, ðxn; unÞ has a subsequence
converging to an element in FðpÞ.

(ii) p is said to be Hadamard well-posed with respect to M if p possesses
a unique solution ðx�; u�Þ and, for any sequence fpng �M with
pn ! p and any sequence fðxn; unÞg � X� E with ðxn; unÞ 2 FðpnÞ,
ðxn; unÞ must converges to ðx�; u�Þ.

LEMMA 4.1. F :M! 2X�K is a sequentially closed set-valued map, i.e.,
GrF ¼ fðp; ðx; uÞÞ 2M� X� K j ðx; uÞ 2 FðpÞg is sequentially closed in
M� X� K.

Proof. Let fðpn; ðxn; unÞÞg be any sequence in GrF with ðpn; ðxn; unÞÞ !
ðp0; ðx0; u0ÞÞ 2M� X� K. We will show that ðp0; ðx0; u0ÞÞ 2 GrF; i.e.,
ðx0; u0Þ 2 Fðp0Þ. Denote pn ¼ ðfn;unÞ, p0 ¼ ðf0;u0Þ. First, since f0 is lower
semicontinuous on X� ðE; sÞ, for any e > 0 , there exists n0 such that
f0ðx0; u0ÞO f0ðxn; unÞ þ e for all nPn0. Since pn ! p0, there exists n1 such
that f0ðx; uÞ � eO fnðx; uÞO f0ðx; uÞ þ e for all ðx; uÞ 2 X� E whenever
nPn1. Let n2 be such that n2Pn1 and n2Pn0, then

f0ðx0; u0ÞO f0ðxn; unÞ þ eO fnðxn; unÞ þ 2e; 8nPn2: ð3Þ

Since ðxn; unÞ 2 FðpnÞ, then un 2 TnðxnÞ and

fnðxn; unÞO fnðx; uÞ; 8ðx; uÞ 2 X� E: ð4Þ

Combining (3) and (4), we have

f0ðx0; u0ÞO fnðx; uÞ þ 2eO f0ðx; uÞ þ 3e; 8ðx; uÞ 2 X� E:

Now let e go to zero, then we have f0ðx0; u0ÞO f0ðx; uÞ, 8ðx; uÞ 2 X� E.
Since un ! u0, by the definition of d, there must be An ¼ A0 ¼ A and

dðun;u0Þ ¼ jkn � k0j ! 0. Since un 2 TnðxnÞ,
hunðxn; unÞ; un � vi ¼ hAðxn; unÞ; un � vi þ knO0; 8v 2 K:
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Hence

hu0ðxn; unÞ; un � vi ¼ hAðxn; unÞ; un � vi þ k0OhAðxn; unÞ; un � vi þ kn
þ jk0 � knjOjk0 � knj ! 0; 8v 2 K

i.e., fung is an approximating sequence for ðVIÞðx0Þ (with respect to fxng).
By the parametrically strong well-posedness of ðVIÞ, ðVI Þðx0Þ has a unique
solution �ux0 towards which fung converges. It follows that u0 ¼ �ux0 since
un ! u0, and thus ðx0; u0Þ 2 Fðp0Þ.
The proof is complete. (

THEOREM 4.1. Every p 2M is generalized Hadamard well-posed and, fur-
thermore, if FðpÞ is a singleton then p is Hadamard well-posed.

Proof. Let fpng �M be any sequence with pn ! p and ðxn; unÞ 2 X� E
with ðxn; unÞ 2 FðpnÞ. Since X is sequentially compact, fxng has a conver-
gent subsequence fxnkg and we may assume that xnk ! x0 2 X. Since
ðxn; unÞ 2 FðpnÞ, we have huðxnk ; unkÞ; unk � viO0 for all v 2 K, which
implies that funkg is an approximating sequence for ðVIÞðx0Þ (with respect
to fxnkg). By the parametrical well-posedness of ðVIÞðx0Þ, there exists a
unique solution u0 to ðVIÞðx0Þ towards which funkgÞ strongly converges
and thus ðpnk ; ðxnk ; unkÞÞ ! ðp; ðx0; u0ÞÞ. By Lemma 4.1, ðp; ðx0; u0ÞÞ 2 GrF,
i.e., ðx0; u0Þ 2 FðpÞ. Hence p is generalized Hadamard well-posed.
The similar argument as stated in the proof of Theorem 2.2 (b) can be

applied to prove the second assertion. Now the proof is complete. (

DEFINITION 4.5. A sequence fðxn; unÞg is an approximating sequence for
p 2M if:

i(i) lim inf
n!1

fðxn; unÞO inf
ðx;uÞ2X�E

u2TðxÞ

fðx; uÞ; and

(ii) huðxn; unÞ; un � viOen, 8v 2 K, where enP0 and lim
n!1

en ¼ 0.

DEFINITION 4.6. An OPVIC is generalized well-posed if:

ii(i) ðVIÞðxÞ has a unique solution for every x 2 X;
i(ii) OPVIC has at least a solution; and
(iii) any approximating sequence fðxn; unÞg for OPVIC has a subsequence

convergent in X� ðE; sÞ to a solution of OPVIC.

DEFINITION 4.7. An OPVIC is strongly well-posed if:

i(i) OPVIC has a unique solution ðx�; u�Þ;
(ii) any approximating sequence fðxn; unÞg for OPVIC converges to
ðx�; u�Þ in X� ðE; sÞ.
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THEOREM 4.2. In space M, the following assertions hold:

ðaÞ generalized Hadamard well-posedness implies generalized well-posed-
ness;

ðbÞ Hadamard well-posedness implies strong well-posedness.

Proof. Let p ¼ ð f;uÞ 2M and let fðxn; unÞg be an approximating sequence
for p, i.e.,

i(i) lim inf
n!1

fðxn; unÞO inf
ðx;uÞ2X�E

u2TðxÞ

fðx; uÞ; and

(ii) huðxn; unÞ; un � viOen, 8v 2 K, where enP0 and lim
n!1

en ¼ 0.

Denote dn ¼ fðxn; unÞ. We construct a sequence fpn ¼ ðfn;unÞg as follows:
for each ðx; uÞ 2 X� E,

fnðx; uÞ ¼
fðx; uÞ � dn; fðx; uÞPaþ 2dn;
aþ dn; aO fðx; uÞ < aþ 2dn:

�

where a ¼ inf
ðx;uÞ2X�E

u2TðxÞ

fðx; uÞ, and

hunðx; uÞ;wi ¼ huðx; uÞ;wi � en; 8w 2 E

It can be routinely checked that

(i) fn is lower semicontinuous on X� ðE; sÞ;
(ii) hunðxn; unÞ; un � viO0; 8v 2 K, i.e., un 2 TnðxnÞ; and
(iii) fnðxn; unÞ ¼ inf

ðx;uÞ 2X�E
u2TnðxÞ

fnðx; uÞ ¼ aþ dn

Hence pn 2M and ðxn; unÞ 2 FðpnÞ. Now we can deduce the following two
statements:

(a) if p is generalized Hadamard well-posed, then fðxn; unÞg has a subse-
quence converging to an element in FðpÞ. Thus p is generalized well-
posed.

(b) if p is Hadamard well-posed, then p has a unique solution towards
which fðxn; unÞg converges. Hence p is strongly well-posed.

The proof is complete. (
Now we state the following corollary (see [1], Theorems 3.4 and 3.5).

COROLLARY 4.1. Every p 2M is generalized well-posed. Furthermore, if
FðpÞ is a singleton then p is strongly well-posed.
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